Impaired growth and elevated fas receptor expression in PIGA(+) stem cells in primary paroxysmal nocturnal hemoglobinuria.

نویسندگان

  • R Chen
  • S Nagarajan
  • G M Prince
  • U Maheshwari
  • L W Terstappen
  • D R Kaplan
  • S L Gerson
  • J M Albert
  • D E Dunn
  • H M Lazarus
  • M E Medof
چکیده

The genetic defect underlying paroxysmal nocturnal hemoglobinuria (PNH) has been shown to reside in PIGA, a gene that encodes an element required for the first step in glycophosphatidylinositol anchor assembly. Why PIGA-mutated cells are able to expand in PNH marrow, however, is as yet unclear. To address this question, we compared the growth of affected CD59(-)CD34(+) and unaffected CD59(+)CD34(+) cells from patients with that of normal CD59(+)CD34(+) cells in liquid culture. One hundred FACS-sorted cells were added per well into microtiter plates, and after 11 days at 37 degrees C the progeny were counted and were analyzed for their differentiation pattern. We found that CD59(-)CD34(+) cells from PNH patients proliferated to levels approaching those of normal cells, but that CD59(+)CD34(+) cells from the patients gave rise to 20- to 140-fold fewer cells. Prior to sorting, the patients' CD59(-) and CD59(+)CD34(+) cells were equivalent with respect to early differentiation markers, and following culture, the CD45 differentiation patterns were identical to those of control CD34(+) cells. Further analyses of the unsorted CD59(+)CD34(+) population, however, showed elevated levels of Fas receptor. Addition of agonist anti-Fas mAb to cultures reduced the CD59(+)CD34(+) cell yield by up to 78% but had a minimal effect on the CD59(-)CD34(+) cells, whereas antagonist anti-Fas mAb enhanced the yield by up to 250%. These results suggest that expansion of PIGA-mutated cells in PNH marrow is due to a growth defect in nonmutated cells, and that greater susceptibility to apoptosis is one factor involved in the growth impairment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fes-Cre Targets Phosphatidylinositol Glycan Class a (Piga) Inactivation to Hematopoietic Stem Cells in the Bone Marrow

A somatic mutation in the X-linked phosphatidylinositol glycan class A (PIGA) gene causes the loss of glycosyl phosphatidylinositol (GPI)-linked proteins on blood cells from patients with paroxysmal nocturnal hemoglobinuria. Because all blood cell lineages may be affected it is thought that the mutation occurs in a hematopoietic stem cell. In transgenic mice, germline transmission of an inactiv...

متن کامل

Deep sequencing reveals stepwise mutation acquisition in paroxysmal nocturnal hemoglobinuria.

Paroxysmal nocturnal hemoglobinuria (PNH) is a nonmalignant clonal disease of hematopoietic stem cells that is associated with hemolysis, marrow failure, and thrombophilia. PNH has been considered a monogenic disease that results from somatic mutations in the gene encoding PIGA, which is required for biosynthesis of glycosylphosphatidylinisotol-anchored (GPI-anchored) proteins. The loss of cert...

متن کامل

Molecular basis of clonal expansion of hematopoiesis in 2 patients with paroxysmal nocturnal hemoglobinuria (PNH).

Somatic mutation of PIGA in hematopoietic stem cells causes deficiency of glycosyl phosphatidylinositol-anchored proteins in paroxysmal nocturnal hemoglobinuria (PNH) that underlies the intravascular hemolysis but does not account for expansion of the PNH clone. Immune mechanisms may mediate clonal selection but appear insufficient to account for the clonal dominance necessary for PNH to become...

متن کامل

A case of paroxysmal nocturnal hemoglobinuria caused by a germline mutation and a somatic mutation in PIGT.

To ascertain the genetic basis of a paroxysmal nocturnal hemoglobinuria (PNH) case without somatic mutations in PIGA, we performed deep next-generation sequencing on all exons of known genes of the glycosylphosphatidylinositol (GPI) anchor synthesis pathway. We identified a heterozygous germline splice site mutation in PIGT and a somatic 8-MB deletion in granulocytes affecting the other copy of...

متن کامل

The mutational landscape of paroxysmal nocturnal hemoglobinuria revealed: new insights into clonal dominance.

Paroxysmal nocturnal hemoglobinuria (PNH) is a disorder of hematopoietic stem cells that has largely been considered a monogenic disorder due to acquisition of mutations in the gene encoding PIGA, which is required for glycosylphosphatidylinositol (GPI) anchor biosynthesis. In this issue of the JCI, Shen et al. discovered that PNH is in fact a complex genetic disorder orchestrated by many genet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 106 5  شماره 

صفحات  -

تاریخ انتشار 2000